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ABSTRACT 

A new addition of convex polytopes is defined and the possibility of representing 
each polytope as a sum of "standard" polytopes is established 

Introduction. Vector addition of convex bodies is very useful in different 
investigations. However there are problems for which vector addition, though 
appropriate in the plane case, becomes unsuitable in higher dimensions. An 
example is the question of decomposability of polytopes. In the plane every 
polygon is the sum of finitely many summands of a simple type (segments and 
triangles), and every convex set is the limit, in the Hausdorff metric, of finite sums 
of triangles; both assertions fail to have analogues in higher dimensions. 

Blaschke in [3, p. 112] suggested another composition process for convex 
bodies which involves the pointwise addition of the products of the principal 
radii of curvature as functions of the outer normal in the case of sufficiently 
smooth convex bodies. Even earlier Minkowski [10, pp. 116-117], discussed a 
corresponding process of composition for polyhedral bodies. Cf. also 14, p. 124]. 
In the present paper we shall define a new addition for convex polytopes which 
is a modification of that mentioned by Minkowski and which may be considered 
as a special case of the addition of generalized curvature functions. Our approach 
is elementary except that, in section 4, we discuss the generalization of this addi- 
tion to arbitrary convex sets. 

The new addition is such that the known results on planar decomposition 
in terms of vector addition have valid analogues in higher dimensions. Further, 
the addition coincides with vector addition in the case of non degenerate poly- 
gons and so planar theorems similar to the usual ones are included in a natural 
way. 
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In section 1 we define the new addition which rests on Minkowski's theorem 
about the determination of a convex polytope by the directions and areas of  its 
faces of  maximal dimension. Some related notions are discussed. Sections 2 
and 3 contain decomposition results, while section 4 is devoted to variants and 
generalizations of the addition. 

1. The new addition of  convex bodies. Let P be a k-dimensional convex 
polytope in Euclidean d-space E a such that the origin is in the relative interior 
of P .  Let E k be the k-space spanned by P and let f ( P )  > k + 1 denote the 
number of  ( k -  1)-dimensional faces of P. With each such face F~, 1 <= i < f ( P ) ,  
we associate a vector N l as follows: 

(i) If  k =  1, i.e. if P is a segment with end points F1 and F2, we set 
N~ = (-1) i(F2 - F1).* 

(ii) If  k _-> 2, then Nt e E k, its direction is that of the outer normal to Fl and 
its length ]N~] equals the (k-1)-dimensional content of F~. 

This definition associates a system ~f'(P) = {N~I 1 < i <_-f(P)} of vectors with 
every polytope P containing the origin in its relative interior. We extend this 
association. Clearly if two translation-equivalent polytopes PI and P2 contain 
the origin as a common relative interior point, then .3<'(P1)= .A/'(P2). Hence, 
for any convex polytope P ,  we may define JV(P) to be ~ f ' ( P -  Q) where Q is 
any relative interior point of P. 

A system ~e- = {Vii I _< i _< n} of non-zero vectors in E k is called equilibrated 
if ~7= 1 V~ = 0 and if no two members are positively proportional. ~e" is called 
fu l l y  equilibrated in E k when it is equilibrated and E k is the span of ~¢'. 

The following result is well-known and easily proved, cf. [10]: 
(M1) If P is a convex polytope in E d, then JV(P) is equilibrated; moreover 

if 0 ~ int P and P spans E k, then ~/'(P) is fully equilibrated in E k 
Minkowski's existence and uniqueness theorem is much deeper, cf. [10], [11] 

and also [2], [4]: 
(M2) If ~ is a fully equilibrated system of vectors in E k , k ~- 2, there exists 

a convex polytope P ,  unique to within a translation, such that ~¢" = .£'(P).  
Clearly P is k-dimensional. 

The above facts make it possible to define a composition of convex polytopes 
called #-addition. More precisely, we define #-addition between the classes 
of  translation-equivalent polytopes (however, see remark 2 of  section 4) in the 

following way: 
Let Pj , j  = 1, 2, be convex polytopes of dimension kj in E d and let the indexing 

of their associated systems 

,W'(Pi) = {N~J)[ 1 < i < nj = f (P j ) }  

* We do not distinguish a point and the radius vector of the point. 
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]~j(1) /~T (2) be chosen so that the vectors ..~ ,.,~ are positively proportional for i satis- 
fying 1 _< i _< no < n. while no other pair of vectors from ~r(Pi)w ;ff(Pz) are 
positively proportional. Then the system 

"P~ = { ~ l  l < i < n l + n 2 - - n o }  

defined by 

r ~T(I) ~. ~T(z) • ,~ s , , ~  , f o r  t < i _ < n o ,  

~ =  ~N} I), for n o < i < n i ,  
/ 
L M~2-)l+no, for nl < i < n l  + n2 - no, 

is equilibrated since each Jff(Pj) is equilibrated. Moreover, the linear span of 
~//" is of dimension k which satisfies k > max (kl, k2). Hence ~ is fully equilibrated 
in some E k. According to Minkowski's theorem (M2) there exists a convex 
polytope P in this E k such that ~e ~ = eft(P) and P is unique to within a trans- 
lation. We define 

P = P1 ~:P2. 

It is convenient to define an associated multiplication by a scalar factor 2. 
If 2 = 0, we define 2 × P to be a point; otherwise 2 x P is that convex polytope 
for which Jff(2 x P ) =  {2Nil Ni e.A/'(P)}. Again, by (M2), the existence and 
uniqueness up to a translation are assured. Clearly ( -  1) x P is the image of P 
under a central reflection and, if P is k-dimensional for k > 2, then 
2 X P = q-121 t l (k-  l)p where the last is the usual scalar multiplication associated 
with vector addition and the indeterminate sign is that of 2. For k = 1, ;t x P 

=121P 
The properties of ~-addition and its associated x-multiplication which are 

listed below are easily verified: 

P I ~ P 2  = P 2 ~ P 1 ,  

P1 @ (P2 @ P3) = (P1 @ Pz) ~: P3, 

2 X (P t@P2)  = 2 x P 1  :~ 2 x P2, 

(21).2) x P  = 21 x ( 2 2 x P ) ,  

(21+22) x P  = 2 1 x P ~ : 2 2 x P  when 2122>0. 

We shall also use the notation 

Pz = Pl ~ P2 ~ ... ~ P,. 
i=l 

REMARK. In the plane the vector sum P1 + P2 of two non-degenerate poly- 
gons has the property that the length of any edge e is the sum of the lengths of 
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those edges of PI and P2 which have the same outer normal as e. Hence 
P1 + P2 = Pz 4~ P2 in the plane. 

2. A decomposition theorem. Our first decomposition result is essentially 
a geometric formulation of the algebraic fact that an equilibrated system of 
vectors is a superposition of minimal equilibrated systems. 

THEOREM 1. Every convex polytope P is expressible in the form 

m 

(*) P = 4~ P~, 
t=1  

where each P~ is a simplex. Further, if  P is d-dimensional and f (P)  = n >= d + 1, 
then there is a representation (*) with m <= n - d. 

Proof. We use induction. The assertion is obvious for d = 1 and also for 
d > 1 when n = d + 1. Thus we may assume from here on that d > 1, n > d + 1. 
Without loss of generality we may assume further that the origin 0 is in the rel- 
ative interior of P .  

Let C be the convex hull of .,4r(P) and let N~o e eft(P). Then, for a suitable 
% > 0, we have -~oN~o ~bdryC and so, by Carath6odory's theorem, 

d 

-~ON~o = ~, =,N,~, =, ~_ O. 
v = l  

In other words, some positive combination of at most d + I vectors from ,/((P) 
is zero: 

IT 

(1) ~ ~,N, = O. 
v = 0  

We suppose the indexing to be chosen so that 0t v ~ 0 when 0 < v < do where 
do < d and ~v = 0 for v > do. We also assume that the vectors N~ and weights 
ct, were such as to make do minimal. Then -%Nto  is a relative interior point 
of the (do-1)-simplex determined by the points Nt,, 1 < v < do. 

Set 

and 

(x = m a x  a v ,  
o~v__.do 

fl, = a , /~  for 0 < v < do; 

then 

O < f l v  < max f l~= 1. 
Oa_v~_~o 
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By equation (1): 

do 

/Vviv = o,  
v = 0  

and therefore the system ~o = {flvN~v I 0 < v < do} is equilibrated. Hence the 
system ~ obtained from 

{ (1 - f l , )N ,v lO< v<do}  U {N, l i~{i, l O<_v<_do} } 

by omitting the null vectors is also equilibrated. By (M2), do  and ~ each 
determines a polytope p<O) and p~l) respectively. The dimension of P<J) is dj < d. 
The number of (do-1)-faces of p<O) is do + 1. Thus p<O) is a simplex. 

Let the number of (dl-1)-faces of p~l) be nl.  We observe that 
n - n 1  > d - d  1 + 1 .  For, if q => 0 is the number of fl, # l, then 

n = n ~ + l + d o - q .  

On the other hand, the q non-zero vectors in { ( 1 -  v _  do} are 
linearly independent since ~o is associated with a simplex p~O). Thus the di- 
mensionality of the intersection of the spaces E a° and E al is at least q and so 

d < dl - d o -  q. 

This establishes the observation. On applying the induction assumption to pO), we 
find that pO) is representable as the ~-sum of no more than n~ - d~ simplices. 
Therefore P is decomposable into at most 1 + n x -  dl < n -  d simplices as 
claimed. 

REMAmC 1. The vector-sum analogue of Theorem 1 is well known for poly, 
gons (see [14]); however, even in E 3 , there are infinitely many types of poly- 
hedra P which are indecomposable under vector addition, i.e. such that, if 
P = P1 + P2, then each P, must be homothetic to P.  See Gale [8], Shephard [12]. 

REMARK 2. Since every d-dimensional convex polytope may be approximated 
in the Hausdorff metric arbitrarily well by polytopes, no d of whose outer nor- 
mals are linearly dependent, the proof of Theorem 1 yields immediately the 
following 

THEOREM 2. Every d-dimensional convex polytope P may be approximated 
in the Hausdorff metric arbitrarily well be finite ~--sums of d-simplices. I f  
P has n faces of dimension d - l ,  the number of summands need be no more 
than n - d .  

It is remarkable that the analogous assertion for vector-sums is false for 
d > 3; in E 3 e v e n  the regular octahedron is not the limit of finite vector sums 
of simplexes, cf. Asplund I-9, p. 264], Shephard 113]. 
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REMARK 3. We omit the simple proof of the following result which has no 
analogue in the case of vector-addition for d > 3. We let Ix] be the greatest 
integer not larger than x. 

Every centrally symmetric polytope P is a #-sum of parallelotopes. More 
precisely, if P is k-dimensional and has 2refaces, m >= k, then P is representable 
as a sum of - [ - re~p]  p-dimensional parallelotopes where 1 < p < k .  

3. A representation theorem. In a certain sense, ~:-addition seems more 
natural if the summands and the sum all have the same dimensions; in other 
words if the systems ~Ar(P~), ~A/'(P) are all fully equilibrated in the same E k. 
Following this idea, one is led to the question as to whether every polytope in 
an E k may be represented as a ~-sum of k-simplices in E k, or other "s tandard" 
polytopes of the dimension k. Without loss of generality, we may take k = d .  

The example of the cube shows that simplices alone will not suffice for the 
purpose. Indeed for every representation of the d-cube P as P = P1 ~ P2 with 
PI and P2 d-dimensional, we have 

f(P1) = f(P2) = f P ) .  

Thus the bound 2d in our next theorem is the best possible. 

THEOREM 3. Every d-polytope P is representable in the form P= ~ "=1 Pi 
where each P~ is a d-polytope with f(Pi) <= 2d. 

Proof. We prove the theorem by induction. The assertion is trivially true 
for the cases d = 1 and d > 1, f (P)  < 2d. Thus we may assume d > 1, f(P) > 2d. 

The vectors in ./if(P) span E a, i.e. the origin 0 belongs to the interior of the 
convex hull of the points {N, I 1 < i < f(P)}.  By a Carathdodory type theorem 
on the interior points of the convex hull of a set, (see e.g. [6], Theorem 3.2) there 
exists a subset I of {1, 2,. . ., f (P)} which contains at most 2d integers and is 
such that 0 is in the interior of the convex hull of {N~[i ~ I}.  Therefore, for 
suitable ~i > 0, the system ~ = {aiNi[ i~I )  is fully equilibrated in E d. 
Obviously we may assume that the a, are such that maxi e lOg I = 1. Let 
uff 2 ={Mj[ j~J}  be the system obtained from 

{ ( 1 - a i ) N , ] i ~ I  } U {N, liq~I } 

by the omission of zero-vectors. 
Since .#'(P) and ~4rl are fully equilibrated, ¢ff2 is equilibrated. Let Px and 

P2 be polytopes such that .A/'(P1)= .A/" x , ~g'(P2)= "#'2. 
If  ¢ff2 is fully equilibrated, that is if P2 is d-dimensional, then the proof is 

completed by induction since f (P2):<f(P).  
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Suppose, however, that ~/'2 is not fully equilibrated; let E k, where 
1 < k < d -  1, be the space spanned by -~2. Since P2 is k-dimensional, by the 
inductive assumption it is representable in the form 

q 

P2 = ~ R  

where each R~ is k-dimensional and f(R~) < 2k. But 

P = P I ~ P 2 =  ~ R ~  x P 1  ; 
s----1 

thus the theorem will be proved if we establish it in the case that f(P2) < 2k, 
i.e. provided J has at most 2k elements. 

Let p be that projection of E d onto E d-k which carries E k onto 0. The pro- 
jection of a fully equilibrated system is fully equilibrated. Thus {p(N~) I i ~ I} is 
fully equilibrated in Ed-k; possibly some p(N,) are zero vectors and have to be 
omitted. As before, there exists a set 10 c 1  which has at most 2 (d -k )  integers, 
as well as a collection of positive numbers fl, < ~/2  such that 

~, fl~p(Ni) = 0 
I ~ l o  

where {p(N~) I ie lo}  is fully equilibrated in E d-k. Now the vector 

N = / iN, 
le Io 

is in E k. Since ~ is fully equilibrated in Ek, there is a fl, 0 < fl < 1, for which 

- f iN = ~ ?jM~ 

where 7y > 0 and 0 < max,, ~r 7j = ~ < 1. Consequently, the two systems ob- 
tained by the deletion of any zero vectors from the two systems 

and 

if7 = ielo} w {(I - ~ - ?,)M/ljeJ } 

are both fully equilibrated in E and each contains less than f(P) vectors. Hence, 
the inductive assumption may be applied to the d-polytopes PI* and P2* corres- 
ponding to the systems eft1* and ¢4r2 *. Clearly P = PI* ~ P2* and so this com- 
pletes the proof of Theorem|3. 
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4. REMARKS. (1) By a slight change in definitions, @-addition in the plane 
may be made to coincide with vector addition of polygons and segments. Only 
the definition of JI/'(P) for the case of a segment P needs to be modified to read: 
If P is a segment, alP(P) is a pair of opposite vectors, each of length equal to 
that of P and perpendicular to the carrier line of P .  The definition of J/'(P) for 
proper polygons and the definition of @-addition in terms of the associated 
equilibrated systems remains unchanged. Then it is easily seen that 

P1 + P2 = P1 @ P2 

for all proper or improper polygons PI and P2. Theorems 1 and 3 remain valid 
and become only reformulations of well-known results. In the first case: Every 
polygon is a vector sum of segments and triangles. In the second case the re- 
presentation involves triangles and quadrangles. 

(2) Let a(P) denote a point valued function, defined for all convex poly- 
topes P ,  which is translation invariant, that is 

a(P + X) = a(P) + X 

for any point X.  For example, take a(P) to be the area centroid of P .  Minkow- 
ski's theorem (M2) implies that if q/" is an equilibrated system there exists a 
unique convex polytope P for which eft(P) = f and a(P) is a preassigned point. 
Let f(P) =n and 

i = 1  

Then an addition of convex polytopes (as opposed to classes of translation- 
equivalent polytopes) can be defined by taking the composite of PI and P2 to 
be that translate of P1 ~: P2 for which a(P) has the value 

[w(P1) a(el) + w(P2)a(P2)]/[w(P1) + w(P2)] • 

This composition is commutative and associative. 
(3) The ~-addition is a specialization to convex polytopes of an operation 

which may be defined for all convex bodies. For simplicity we discuss only the 
case of d-dimensional bodies in E ~. 

The area function SK(og) of a convex body K is a non-negative, totally additive 
set-function defined for the Borel sets co of the surface f~ = {~} of the unit sphere 
of E d by the following condition. SK(og) is the (d-1)-dimensional content of the 
set of boundary points of K each of which has a supporting hyperplane with 
outer normal in co. 
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Minkowski's theorem (M2) has the following generalization, (see [1], [5], 
[7]): 

A non-negative, totally additive set-function ~b(og) over the Borel sets of f/ 
is the area function S~(o9) of a convex body K if and only if ~b is positive for each 
open hemisphere and 

f a ~dp(df~) = 0 

i.e. the centroid of the mass-loading of f~ specified by q~ is at the centre of f~. 
Moreover, if ~b satisfies these conditions, K is determined to within a translation. 

Now if K1 and K2 are convex bodies in E d, it follows that there exists a con- 
vex body K~ ~ K 2 unique to within a translation, which has area function 
s ,(co) + 

This #-addition of general convex bodies reduces to the composition process 
suggested by Blaschke which we mentioned at the beginning of this paper if the 
bodies are sufficiently smooth. It may have applications to different problems. 
As a minor instance, we mention the following. The ~%-sum of convex bodies 
of constant brightness is clearly of constant brightness. Now the only such convex 
bodies which have been explicitly described are the sphere and a special figure 
of revolution Ko, see [3, p. 153]. The existence of bodies of constant brightness 
which are not figures of revolution is assured: for we may let K 0 and K~ be 
two bodies of the type described by Blaschke which are not coaxial. Then it 
is easily shown that Ko # K~ is not a figure of revolution, but it is a body of 
constant brightness. One more observation along these lines: a central-symmetric 
body of constant brightness must be a sphere. This gives the curious result that, 
if K is of constant brightness, K # ( - K )  is a sphere. The analogous result for 
vector addition is: if K is of constant width, then K + ( - K )  is a sphere. 
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